Get €500 (or $500) on your prepaid balance! Use it for premium subscriptions or job postings. Read more Close

AdapTor: Adaptive Topological Regression for quantitative structure-activity relationship modeling.

Created on 29 Aug 2025

Authors

Yixiang Mao, Souparno Ghosh, Ranadip Pal

Published in

Journal of cheminformatics. Volume 17. Issue 1. Pages 128. Aug 28, 2025. Epub Aug 28, 2025.

Abstract

Quantitative structure-activity relationship (QSAR) modeling has become a critical tool in drug design. Recently proposed Topological Regression (TR), a computationally efficient and highly interpretable QSAR model that maps distances in the chemical domain to distances in the activity domain, has shown predictive performance comparable to state-of-the-art deep learning-based models. However, TR's dependence on simple random sampling-based anchor selection and utilization of radial basis function for response reconstruction constrain its interpretability and predictive capacity. To address these limitations, we propose Adaptive Topological Regression (AdapToR) with adaptive anchor selection and optimization-based reconstruction. We evaluated AdapToR on the NCI60 GI50 dataset, which consists of over 50,000 drug responses across 60 human cancer cell lines, and compared its performance to Transformer CNN, Graph Transformer, TR, and other baseline models. The results demonstrate that AdapToR outperforms competing QSAR models for drug response prediction with significantly lower computational cost and greater interpretability as compared to deep learning-based models.

PMID:
40877895
Bibliographic data and abstract were imported from PubMed on 29 Aug 2025.

Read full publication at:
Please sign in to see all details.

Stats

  • Community rating n/a 0 votes
  • Reviewers' rating n/a 0 votes
  • Your rating

1-terrible, 9-excellent. How would you rate this publication? Sign in in to submit your rating.

  • Recommendations n/a n/a positive of 0 vote(s)
  • Views 7
  • Comments 0

Recommended by

  • No recommendations yet.

Post a comment

You need to be signed in to post comments. You can sign in here.

Comments

There are no comments yet.

Loading ad...