Get €500 (or $500) on your prepaid balance! Use it for premium subscriptions or job postings. Read more Close

Deep tissue profiling of Populus stem at single nucleus level reveals uncharacterized cell types and cell-specific gene regulatory networks.

Created on 29 Aug 2025

Authors

Henry W Schmidt, Daniel Conde, Wendell J Pereira, Paolo M Triozzi, Kelly M Balmant, Christopher Dervinis, Matias Kirst

Published in

Genome biology. Volume 26. Issue 1. Pages 258. Aug 28, 2025. Epub Aug 28, 2025.

Abstract

Single-cell genomics is revolutionizing plant developmental biology, enabling the transcriptome profiling of individual cells and their lineage relationships. However, plant cell walls polymers hamper the dissociation and analysis of intact cells. This rigid structure can conceal cell types embedded in complex, lignified, multi-cell layered tissues such as those undergoing secondary growth. Their absence leads to incomplete single-cell genomic atlases and lineage inferences.
We isolate nuclei to capture transcripts representing the diversity of cells throughout the stem of the woody perennial Populus trichocarpa generating a high-resolution transcriptome atlas of cell types and lineage trajectories. RNA sequencing of 11,673 nuclei identifies 26 clusters representing cell types in the cambium, xylem, phloem, and periderm. Comparative analysis with protoplast-derived transcriptome data reveals significant biases, with nuclei-based sequencing providing a higher representation of cells in lignified inner xylem tissues. Among previously underrepresented types, we uncover vessel-associated cells (VAC), a largely uncharacterized parenchyma subtype and the terminus of a xylem cell lineage. Gene regulatory analysis identifies a VAC-specific network and the Populus MYB48 as its primary regulator. Functional validation of MYB48 knockout mutants show an increase in vessel number and size, pointing to a role of VACs in vessel development.
Our study demonstrates the capture and transcriptome characterization of cell types embedded in plant secondary growth, identifying novel regulators of xylem development and stress adaptation. The discovery of MYB48 as a key regulator of VAC function highlights a previously uncharacterized mechanism influencing vessel development, with applications to improving wood formation and stress resilience.

PMID:
40877938
Bibliographic data and abstract were imported from PubMed on 29 Aug 2025.

Read full publication at:
Please sign in to see all details.

Stats

  • Community rating n/a 0 votes
  • Reviewers' rating n/a 0 votes
  • Your rating

1-terrible, 9-excellent. How would you rate this publication? Sign in in to submit your rating.

  • Recommendations n/a n/a positive of 0 vote(s)
  • Views 9
  • Comments 0

Recommended by

  • No recommendations yet.

Post a comment

You need to be signed in to post comments. You can sign in here.

Comments

There are no comments yet.

Loading ad...