
A powerful new model to detect life on planets outside of our solar system, more accurately than ever before, has been developed by UCL researchers.
The new model focuses on methane, the simplest organic molecule, widely acknowledged to be a sign of potential life.
Researchers from UCL and the University of New South Wales have developed a new spectrum for ‘hot’ methane which can be used to detect the molecule at temperatures above that of Earth, up to 1,500K/1220°C – something which was not possible before.
To find out what remote planets orbiting other stars are made of, astronomers analyse the way in which their atmospheres absorb starlight of different colours and compare it to a model, or ‘spectrum’, to identify different molecules.
Professor Jonathan Tennyson, (UCL Department of Physics and Astronomy) co-author of the study said: “Current models of methane are incomplete, leading to a severe underestimation of methane levels on planets.We anticipate our new model will have a big impact on the future study of planets and ‘cool’ stars external to our solar system, potentially helping scientists identify signs of extraterrestrial life.”
Lead author of the study, Dr Sergei Yurchenko, (UCL Department of Physics and Astronomy) added: “The comprehensive spectrum we have created has only been possible with the astonishing power of modern supercomputers which are needed for the billions of lines required for the modelling. We limited the temperature threshold to 1,500K to fit the capacity available, so more research could be done to expand the model to higher temperatures still. Our calculations required about 3 million CPU (central processing unit) hours alone; processing power only accessible to us through the DiRAC project.
“We are thrilled to have used this technology to significantly advance beyond previous models available for researchers studying potential life on astronomical objects, and we are eager to see what our new spectrum helps them discover.” he added.
The new model has been tested and verified by successfully reproducing in detail the way in which the methane in failed stars, called brown dwarfs, absorbs light.
Content: UCL press release (modified).
Cover image: Wikimedia commons.
References
DOI: 10.1073/pnas.1324219111.
Stats
- Recommendations +1 100% positive of 1 vote(s)
- Views 5265
- Comments 1
Recommended
-
Aleksander Benjak
Scientific Officer | NCCR Molecular Systems Engineering, University of Basel
Also:
- Web Developer | Science HR
- Web Developer | Science Simplified
- Co-Founder and Web Developer | Life Science Network gGmbH
Post a comment
Comments
-
fred maher Monday, 02 February 2015 - 19:07 UTC
First of all, are there fossils or life expressions elsewhere, is it possible? Isn’t the emergence and maintenance of life a process of radical peculiarity? That is, is a unique and unrepeatable past totally necessary? Or does life emerge through space like mushrooms when some conditions are present? So, how many conditions are necessary: three, four, trillions, infinite? Only one, water or any sort of God? Is God the word that means infinite conditions, absolute necessity? Anyway, how did the life that emerge in a given conditions resist when switching to a different moment? How does life resist time itself? But, is it possible for human beings to recognize a simpler
life than their own brain only? On the other hand, beyond likeness, is it possible to recognize a complex thing than human brain, is this the extra-terrestrial life that some people are searching unsuccessfully? However, is there an origin of life or would it be as finding a cut in the material history of the universe, an infinite void that human language patches now for convinnience? Along these lines, there is a peculiar book, a short preview in http://goo.gl/8Ax6gL Just another suggestion, far away from dogmas or axioms.